

smallrnaseq - tool for short RNA analysis

Contents:

	Introduction
	Command Line Interface

	Screencast

	Citation

	FAQ

	Installation
	Linux

	Mac OSX

	Windows

	Vienna package

	Required dependencies

	Installing R for differential expression

	Using smallrnaseq
	Usage

	Configuration file settings

	Examples

	Outputs

	Differential expression

	Adapter trimming

	Aligners

	Alignment settings

	References

	Code Examples
	Counting microRNAs

	Counting isomiRs

	Mapping to the genome

	Novel miRNA prediction

	Differential Expression

	Methodology
	Counting known miRNAs

	Counting isomiRs

	Counting genomic features

	Novel miRNA prediction

	smallrnaseq
	smallrnaseq package

Indices and tables

	Index

	Module Index

	Search Page

Introduction

smallrnaseq is a Python package for processing of small RNA seq data.
This is used to elucidate the small RNA contents of deep sequencing reads.
For non Python users there is a command line interface that is quite simple to use.
Typically a lot of disparate tools are integrated to create pipelines for this kind
of analysis. This can be quite cumbersome. Our objective is to perform the
analyses using Python packages as far as possible allowing almost all requirements
to be installed using the pip tool. An aligner such as bowtie are still needed.

Command Line Interface

Installing the package provides the command smallrnaseq in your path.
This allows users is a command line interface to the library without the need
for any Python coding at all. It provides a set of pre-defined functions with
parameters specified in a text configuration file. This is documented in detail
in the Using smallrnaseq section.

Screencast

A screencast tutorial for using the command line interface: https://www.youtube.com/watch?v=m24cuLyTqg0

Citation

If you use this software in your work please cite the following article:

Farrell, D. (2017). smallrnaseq : short non coding RNA-seq analysis with Python.
Bioarxiv. https://doi.org/10.1101/110585

FAQ

Which version of python is supported?

This package should work with python>=2.7 and >=3.6.

Does this package work in windows?

In theory yes, but this has not been tested. We strongly recommend using a linux OS. You can run a Linux operating system inside windows using virtualbox if you don’t have linux on a separate computer. Just make sure you have enough memory (probably 8GB min).

How about OSX?

Yes it should run. It’s recommended to install python with anaconda (see also bioconda).

Can I use another aligner?

As long as the aligner produces sam/bam file output it should work. It simply needs to be integrated into the package using a small amount of code. This can be done on request. Bowtie (v1) is recommended otherwise.

How reliable is the novel miRNA prediction?

It is hard to benchmark such an algorithm as there is no ‘gold standard’. Our approach is broadly similar to the miRanalyzer one in that we use a feature classifier to score likely precursors then add some filters to remove unlikely candidates. The precursor score is only one factor. We do not use a more sophisticated model like miRDeep2. Our version is designed to be fast and easy to interpret the results. It is highly recommended to use another tool to compare the results to. If you think to much junk is being returned you can raise the score cutoff/read_cutoff or vice versa.

Installation

Linux

On most linux operating systems installations of Python should include the pip tool.
If not use your distributions package manager to install pip first. Then the simple
call below should install all dependencies.

You should first run the following commands for installing the pre-requisites that might not
be on your system already.

Ubuntu:

sudo apt install python-dev samtools liblzma-dev libbz2-dev zlib1g-dev liblzo2-dev python-scipy
sudo pip install smallrnaseq
sudo apt install bowtie

Fedora:

sudo dnf install zlib-devel bzip2-devel xz-devel samtools swig redhat-rpm-config python-devel
sudo pip install cython pysam
sudo pip install smallrnaseq
sudo dnf install bowtie

Then finally run:

pip install smallrnaseq

Or for the current github version you can use:

pip install -e git+https://github.com/dmnfarrell/smallrnaseq.git#egg=smallrnaseq

Snap package

You can install the application with a single command as a snap on Ubuntu and other supported linux systems. This has the advantage of convenient updates and not having to worry about any dependencies as everything is packaged in the snap. To install from the command line:

snap install smallrnaseq

You can also visit the store page for the app at https://snapcraft.io/smallrnaseq

For python 3 installs

You may need to use the command pip3 instead if python 2 is also on your system, like in Ubuntu.
When installing packages with apt you likely need to specify python 3. e.g. python3-numpy instead
of python-numpy.

For python 2.7 ONLY

You might also need the future package. Run pip install future to install.

Mac OSX

You will need to make sure you have Python. Anaconda is recommended as it provides most of the
package requirements built in. Follow these steps in order:

Download and run the Mac OS X installer from https://www.continuum.io/downloads.
The installer will automatically configure your system to use the Anaconda Python.
Close the terminal and start a new one.

You should then add the bioconda channels:

conda config --add channels conda-forge
conda config --add channels defaults
conda config --add channels r
conda config --add channels bioconda

Type this command to install the remaining requirements:

conda install pybedtools bx-python HTseq

smallrnaseq can then be installed using pip:

pip install smallrnaseq

bowtie on OSX

You can install bowtie with conda too but it may hang or give an error on the latest
version of OSX (Sierra). Running conda install bowtie=1.1.2
will install the older version which should work.

Windows

If you are a Windows user there are several options available:

	Simply use linux running inside a virtualbox instance. see http://www.makeuseof.com/tag/how-to-use-virtualbox/

	Install Windows Subsystem for Linux (WSL [https://docs.microsoft.com/en-gb/windows/wsl/install-win10]) and use the linux instructions above. This is confirmed to work on Windows 10.

	Use conda and bioconda (see the OSX instructions below).

Vienna package

This is needed if you want to do novel miRNA prediction. It has to be installed separately
on all systems. Go to https://www.tbi.univie.ac.at/RNA/#binary_packages and download the
binary for your system. Note: this is not required if using the snap package.

Required dependencies

	numpy

	pandas

	matplotlib

	seaborn (requires scipy)

	HTSeq

	bx-python

	pyfaidx

	scikit-learn

Installing R for differential expression

R is not a requirement for this package but is currently needed to do differential expression
analysis using the edgeR package. You will not need to use R directly at all. smallrnaseq handles
pre-processing your count data according to the factors you want to compare.

Installation is via the package managers so on Ubuntu:

sudo apt install r-base

Go to https://cran.r-project.org/ and download the installers.

This is an extra package provided as part of the bioconductor project. You can install from the command line as follows:

try http:// if https:// URLs are not supported
source("https://bioconductor.org/biocLite.R")
biocLite("edgeR")

Using smallrnaseq

This page refers to using the Command Line Interface of smallrnaseq. For programmers using the API see code examples.

Installing the package provides the command smallrnaseq in your path. This allows users is a command line interface to the library without the need for any Python coding at all. It provides a set of pre-defined functions with parameters specified in a text configuration file. The primary input is one or more fastq files containing short read data from a small rna-seq experiment. Note: It is assumed they have already been adapter trimmed, if required.

Usage

Usage largely involves setting up the config file and having your input files prepared. Running the command smallrnaseq -c default.conf will create a new config file for you to work from if none exists. Just edit this with a text editor and then to execute:

smallrnaseq -c default.conf -r

Several other functions are available from the command line without the config file, i.e. to collapse or trim reads. Type smallrnaseq -h to get a list of options.

Configuration file settings

The advantage of configuration files is in avoiding long commands that have to be remembered or are prone to mistakes. Also the config files can be kept to recall what setting we used or to copy them for another set of files. The current options available in the file are shown below. The meaning of each option is explained explained below. If you are unsure or don’t require an option value, leave it at the default. Options can be excluded from the file completely and defaults will be used but it’s recommended to just leave unused options blank. You can also comment out lines with a ‘#’ at the start if you want it to be ignored. The [base] heading should always be present an indicates a section of the file. The [aligner] section is for setting alignment parameters on a per library basis if you need to. The [novel] section is for a few novel mirna prediction settings. The [de] section is used for differential expression which can be ignored if you don’t need that:

[base]
filenames =
path =
overwrite = 0
index_path = indexes
libraries =
ref_fasta =
features =
output = results
add_labels = 1
aligner = bowtie
mirna = 0
species = hsa
pad5 = 3
pad3 = 5
verbose = 1
cpus = 1

[aligner]
default_params = -v 1 --best
mirna_params = -v 1 -a --best --strata --norc

[novel]
score_cutoff = 0.8
read_cutoff = 50

[de]
sample_labels =
sep = ,
sample_col =
factors_col =
conditions =
logfc_cutoff =

Settings explained:

	name

	example value

	meaning

	filenames

	test.fastq

	input fastq
file(s) with
reads, comma
separated

	path

	testfiles

	folder containing
fastq files
instead of
listing files

	index_path

	indexes

	location of
bowtie or subread
indexes

	aligner

	bowtie

	which aligner to
use, bowtie or
subread

	ref_fasta

	hg19

	reference genome
fasta file,
optional

	libraries

	RFAM_human,mirbase-hsa

	names of
annotated library
indexes to map to

	features

	Homo_sapiens.GRCh37.75.gtf

	genome annotation
file. ONLY needed
for counting
genomic features

	output

	smrna_results

	output folder for
temp files

	add_labels

	1

	whether to add
labels to replace
the file names in
the results (0 or
1)

	mirna

	0

	run mirna
counting workflow
(0 or 1)

	species

	bta

	mirbase species
to use

	pad5

	3

	3’ flanking bases
to add when
generating mature
mirbase sequences

	pad3

	5

	5’ flanking bases
to add

	verbose

	1

	print extra
information

	cpus

	1

	number of threads
to use

	sample_labels

	samplefile.txt

	csv file with
sample labels

	default_param
s

	-v 1 –best

	default alignment
parameters

	mirna_params

	-v 1 -a –best –strata –norc

	default miRNA
alignment
parameters

Examples

Mapping to one or more libraries of known RNAs

This will simply consist of setting the libraries option to match the names of files you have created aligner indexes for. You can download RNA annotations in fasta format from http://rnacentral.org/. The index files should be placed in the index_path folder. To create an index using bowtie you supply a fasta file and the indexes are placed in a folder called ‘indexes’. You can move them to another folder if needed:

smallrnaseq -b myrnas.fa

By default file names are replaced with short ids of the form s01, s02, etc. This also writes out a file called sample_labels.csv in the output folder. Set add_labels = 0 if you don’t want this behaviour.

Mapping to known miRNAs and finding novel miRs

Say we have a set of fastq files in the folder ‘testfiles’ that we want to count miRNAs in. We would set the options mirna = 1 and path = testfiles. Note if just mapping to mirbase mature/precursor sequence you don’t have to create an index file since it is generated automatically. If you are using any other libraries you should create the aligner index first. For novel miRNA discovery we need the reference genome and index for that.

Mapping to a reference genome with small RNA features

There are some advantages to using a full reference genome in that it allows us to see of the reads align outside the target transcripts and we might therefore exclude them. Also we can normalise the read counts by the sum of all mapped reads. This depends on what features you have in the gtf file. To count our reads using features in a reference genome, provide the ref_genome name which should correspond to the index name of the reference sequence. We also need to set features, a set of features stored in a gtf, gff or bed file. Remember that the coordinates in this file must correspond to the reference sequence. See Counting features for more information.

Outputs

The main outputs are csv files with the counts for each sample in a column, also produced is a ‘long form’ csv file with a separate row for every sample. These csv files can be opened in a spreadsheet. Temporary files such as collapsed read files are placed in a ‘temp’ folder inside the output folder.

When you run the mirna workflow on a set of samples, a file called mirbase_mature_counts.csv is created in the folder. The column names are mostly self explanatory. Each sample has a column for the raw counts and normalized counts. mean_norm is the normalized mean and total_reads is the sum of all raw read counts:

name,db,sample1,sample2,sample3,sample1 norm,sample2 norm,sample3 norm,total_reads,mean_norm
bta-miR-486,mirbase-bta,1444,1070,5579,176722.56,47917.6,127569.57,239793,284398.062
bta-miR-122,mirbase-bta,693,10676,4,84812.14,478101.21,91.46,11409,149778.2825
bta-miR-423-5p,mirbase-bta,337,100,2008,41243.42,4478.28,45914.98,4270,62353.636
bta-miR-22-3p,mirbase-bta,315,1053,5655,38550.97,47156.29,129307.39,7462,45154.618
bta-miR-92a,mirbase-bta,332,891,2484,40631.5,39901.48,56799.21,5989,39094.122
bta-miR-192,mirbase-bta,659,656,1482,80651.08,29377.52,33887.45,2945,33098.118
bta-miR-21-5p,mirbase-bta,453,227,1311,55439.97,10165.7,29977.36,2054,27358.996
..

Differential expression

This workflow is done using a separate command and via some extra options not shown above for clarity. To execute this type of analysis you must have done gene counting (e.g. miRNAs) and have the results in a csv file. The analysis is then run using:

smallrnaseq -c default.conf -d

In the default file the additional options needed are in a separate [de] section. Most are blank by default. If you want to do differential expression analysis of the genes from your results the other main thing you need to provide is a sample label file that matches the filenames you have analysed to the conditions. You then choose which conditions you want to compare. The options are explained below.

	name

	example value

	meaning

	count_file

	mirna_counts.csv

	csv file with
gene counts

	sample_labels

	labels.txt

	csv/text file
with sample
labels

	sep

	,

	separator for
sample labels
text file

	sample_col

	file_name

	column for the
sample file names

	factors_col

	status

	column for factor
labels

	conditions

	control,infected

	conditions to
compare from
factor column
(each replicate
will have the
same condition)

	logfc_cutoff

	1.5

	cutoff for log
fold changes
(lower are
ignored)

This analysis is run using the R edgeR package, so R must be installed. See Installing R.

Example

The sample label file below shows how we use the above options. Our filenames are in the Run_s column. We want to compare the conditions 3 and 6 months samples in the age_s (the ‘factor’) column. mirna_mature_counts.csv is the file where counts from our mirna analysis are stored. This should have a column for each sample. Note that you could use counts output from any program as long as they are csv and have the right column names, see the output file formats section.
It is assumed you are using replicates. Note that column names are case sensitive:

Run_s age_s isolate_s
SRR3457948 3 months animal1
SRR3457949 6 months animal1
SRR3457950 6 months animal4
SRR3457951 15 months animal4
SRR3457952 3 months animal5
SRR3457953 6 months animal5
SRR3457954 15 months animal5
SRR3457955 3 months animal6
SRR3457956 6 months animal6
...

So the config file will look like this:

[de]
sample_labels = SraRunTable.txt
sep = tab #tab delimiter
count_file = mirna_mature_counts.csv
sample_col = Run_s
factors_col = age_s
conditions = 3 months,6 months
logfc_cutoff = 1.5

Adapter trimming

Since there are numerous programs to perform this task it is left to the user to perform trimming of the reads prior to input.

Aligners

Traditional sequence alignment tools like BLAST are not well suited for next generation sequencing where one needs to align millions of short sequences very quickly. This has given rise to the development of a new class of short read aligners of which there are now dozens available. For small RNA-seq data alignment present certain specific challenges but standard aligners used for normal RNA-seq are usually adequate with the right parameters. The aligner and parameters will have an effect on the results, so trying more than one might be a good idea.

Currently smallrnaseq integrates bowtie (version 1) and subread. Though others can be added on request. These are free and easy to install on linux and OSX systems. On Ubuntu the following command installs both:

apt install bowtie subread

Links

	http://subread.sourceforge.net/

	http://bowtie-bio.sourceforge.net/index.shtml

Alignment settings

The parameters used for the alignment/mapping procedure can be important
in the final counts produced, irrespective of the aligner used.

This can be a complex topic in itself and general users will be confused
by the many options. The command line tool for smallrnaseq takes the
simple approach of providing a default alignment parameter for general
mapping to libraries, another for mapping miRNAs and one for reference
genomes. All can be changed in the config file if needed. You can also
set custom parameters per library in the aligner section.

Bowtie

For general mapping -v 1 --best is used. -v 1 reports read
mappings with up to one mismatch, options --best orders the mappings
from best to worse alignments.

In miRDeep2 when mapping to the mature miRNAs (miRBase sequences) for
mature quantification the following parameters are used:

-v 1 -a --best --strata --norc

Here -a means report all valid alignments, options
--best --strata orders the mappings from best to worse alignments
according to the strata definition of bowtie. --norc means do not
map reads to the reverse complement of the sequences.

For reference genome mapping miRDeep2 uses these parameters:

-n 0 -e 80 -l 18 -a -m 5 --best --strata

Subread

-m 2 -M 1 is the default for general alignment to libraries. If you
use subread you can check the parameters by typing
subread-align --help at the command line, or refer to the website.

Configuration file

In the aligner section set your parameters. In the example below
bos_taurus is the name of the reference genome. We have also used custom
settings for mirna and another library of tRNAs.

[aligner]
mirna_params = -n 1 -l 20
bos_taurus = -v 1 -k 50
bosTau8-tRNAs = -v 0 --best

Code example

If using the package in your python code, aligner parameters are set via
the aligners module. This is done before calling mapping routines such
as map_rnas.

for example:

from smallrnaseq import aligners
aligners.BOWTIE_PARAMS = '-v 0 --best'
aligners.SUBREAD_PARAMS = '-m 0 -M 1'

References

	Shi, J., Dong, M., Li, L., Liu, L., Luz-Madrigal, A., Tsonis, P. A.,

… Liang, C. (2015). mirPRo–a novel standalone program for
differential expression and variation analysis of miRNAs. Scientific
Reports, 5, 14617. http://doi.org/10.1038/srep14617

	Friedländer, M. R., Mackowiak, S. D., Li, N., Chen, W., & Rajewsky,

N. (2012). miRDeep2 accurately identifies known and hundreds of novel
microRNA genes in seven animal clades. Nucleic Acids Research, 40(1),
37–52. http://doi.org/10.1093/nar/gkr688

Code Examples

Counting microRNAs

Requires you provide at least one fastq file and have a short read aligner installed. You should also
specify the species being mapped to:

import smallrnaseq as smrna
res = smrna.map_mirbase(files=['test_1.fastq','test_2.fastq'], overwrite=True, aligner='bowtie',
 species='hsa', pad5=3, pad3=5)

Counting isomiRs

This method is used to count isomiRs using results from previously mapped reads. So a sam file is
required:

smrna.count_isomirs(samfile, truecounts, species='bta')

Mapping to the genome

This requires a reference genome and a gtf file with miRNA features:

featcounts = srseq.map_genome_features(['test_1.fastq'], 'bos_taurus', gtffile,
 outpath='ncrna_map', aligner='subread', merge=True)

Novel miRNA prediction

The built-in method for novel prediction should be considered a somewhat ‘quick and dirty’
method at present but is relatively fast and convenient to use. The basic idea is to take
clusters of reads that could be mature sequence and find suitable precursors. Structural
features of each precursor are then scored using a classifier. The best candidate is selected
is there is at least one. We have followed a similar approach to the miRanalyzer method.

The following features are currently used in our algorithm, most are the same as those used
in sRNAbench (miRanalyzer). The diagram below may help to clarify some of the terminology used.

[image: _images/mirna_example.png]
To predict miRNAs you need to have run mapping on genome. Then use the sam file and read
counts to get the true reads and input this into the method find_mirnas with a reference
genome fasta file. The reference fasta must match the bowtie index you used for alignment:

from smallrnaseq import novel
import pandas as pd
#single file prediction
readcounts = pd.read_csv('countsfile.csv')
samfile = 'mysamfile.sam'
reads = utils.get_aligned_reads(samfile, readcounts)
new = novel.find_mirnas(reads, ref_fasta)

Differential Expression

Assuming we have all the raw files, they need to be adapter trimmed.
Optionally you can remove other ncrnas before counting your target rnas class,
though that may not be advisable.
The following code maps all the files to bovine mature miRNAs and counts the mapped genes,
then saves the results to a csv file which has the counts in one column per sample.
You can skip this if you already have the counts file:

import pandas as pd
import smallrnaseq as smrna
from smallrnaseq import base, utils, de

path = 'pathtodata'
base.BOWTIE_INDEXES = 'bowtie_index'
refs = ['mirbase-bta'] #name of bowtie index

files = glob.glob(path+'/*.fastq')
outpath = 'ncrna_map'
#map to selected annotation files
counts = smrna.map_rnas(files, refs, outpath, overwrite=True)
R = smrna.pivot_count_data(counts, idxcols=['name','db'])
R.to_csv('mirna_counts.csv',index=False)

Methodology

smallrnaseq is a Python package that implements some of the standard approaches for quantification and analysis of sncRNAs. This is usually implemented as part of a ‘pipeline’ that goes from raw fastq files to final counts of specific genes (e.g. coding transcripts or RNA species).

For command line usage see the ‘using smallrnaseq’ section.

Python programmers may find the various modules useful in creating their own more flexible workflows.
A functional approach is used with a flat hierarchy of modules with limited use of classes.

[image: _images/workflow.png]

Counting known miRNAs

This program uses the known miRNA sequences from miRBase for counting of species specific sequences. The current release used is version 22 (March 2018).

Counting isomiRs

Much miRNA expression profiling uses the read counts of all isoforms
(isomiRs) of the canonical mature sequence summed together. While this
may be appropriate for many cases it is also useful to consider the
isoforms separately. This is true for several reasons:

	you only wish to count the exact canonical sequence.

	if the canonical mature sequence in miRBase is not even common in the
tissue or samples you are studying and you wish to know this
information.

	your samples contain two isoforms that differ such that one will not
be detected in (for example) a PCR assay, giving an inconsistent
result.

	one or more isoforms can better distinguish between sets of samples
(i.e. control and disease) than the entire sum of counts.

Classifying isomiRs

Sequence variants include 5’ and 3’ trimming and extension,
non-templated additions (enzymatically addition of a nucleotide to the
3’ end, i.e. adenylation, uridylation). A single read can have more than
one modification so sRNAbench provided a useful non-redundant
hierarchical method of classifying isomiRs. See reference below. A
similar scheme has been used by Loher et al. The sRNAbench scheme is
illustrated below:

isomiR counting

We have implemented the sRNAbench naming scheme. isomiR data is output
by default when the map_mirbase method is called.

If required, you can explicitly call the routine to count isomirs,
assuming you have already aligned to the mirbase sequences and have a
sam file. You should also provide the original read counts loaded from
the csv file which is always created when the reads are collapsed.

smrna.count_isomirs(samfile, truecounts, species='bta')

References

	Barturen, G., Rueda, A., … Hackenberg, M. (2014). sRNAbench:
profiling of small RNAs and its sequence variants in single or
multi-species high-throughput experiments. Methods in Next Generation
Sequencing, 1(1), 21–31.

	Telonis, A.G. et al., 2015. Beyond the one-locus-one-miRNA paradigm:
microRNA isoforms enable deeper insights into breast cancer
heterogeneity. Nucleic Acids Research, 43(19), pp.9158–9175.

	Loher,P., Londin,E.R. and Rigoutsos,I. (2014) IsomiR Expression
Profiles in Human Lymphoblastoid Cell Lines Exhibit Population and
Gender Dependencies. Oncotarget, 5, 8790–8802.

Counting genomic features

Counting features means counting the overlap of your reads with the
locations of gene annotations (the features) in a reference genome. A
short read aligner is the first step. Note that if you are aligning to a
human-sized reference genome, creating the index from the fasta file can
take some time. Also this process can use a lot of memory. See the section on
Aligners for more information.

After read alignment to a reference genome the next step in
transcriptomics is usually to count the features that each read
intersects. This done using the sam or bam file generated by the aligner
(e.g. bowtie) along with a gtf or gff file that stores the annotated
genes - the features. These files are available for many spedcies from
Ensembl. These will include annotations for non coding RNAs [http://www.ensembl.org/info/genome/genebuild/ncrna.html].

Counting features

import smallrnaseq as smrna
import pandas as pd
readcounts = pd.read_csv('counts.csv')
fcounts = smrna.count_features(samfile, gtffile, truecounts=readcounts)

This returns a pandas dataframe of the form:

 name reads
259 _no_feature 290705
50 _unmapped 145281
645 ENSBTAT00000060484 15162
287 ENSBTAT00000042309 6284
538 ENSBTAT00000051764 5575
...

This will merge the gtf file fields with the read counts, which can also
be done explicitly using:

res = base.merge_features(fcounts, gtffile)

Links

	HTSeq feature counting [http://www-huber.embl.de/users/anders/HTSeq/doc/counting.html]

	Ensembl ftp downloads [http://www.ensembl.org/info/data/ftp/index.html]

	Ensembl genome annotation [http://www.ensembl.org/info/genome/genebuild/genome_annotation.html]

Novel miRNA prediction

Novel miRNAs in a species are generally those for which the mature
sequence is not present in miRBase. This may be because the species has
not been well studied or insufficient evidence is available to consider
a sequence a real miRNA. There are problems with false positives in
general for miRNA discovery from deep sequencing and this should be kept
in mind when running an analysis of your reads. It is advised to use at
least two algorithms for such an analysis. Most of the higher abundance
miRNAs have been identified in the commonly studied species.
Detection/prediction of new mirs will therefore involve looking at the
low abundance (or tissue specific) forms which will need further
evidence such as conservation, experimental verification and perhaps
identification of function.

There are by now multiple algorithms available for predicting novel
miRNAs from small RNA sequencing data. The most popular is probably
miRDeep2. This algorithm is accessible via the mirdeep2 module
assuming you have installed mirdeep2 as well. However we include a
native algorithm in smallrnaseq for novel prediction, this is described
below.

Method

The built-in method for novel prediction should be considered a somewhat
‘quick and dirty’ method at present but is relatively fast and
convenient to use. The basic idea is to take clusters of reads that
could be mature sequence and find suitable precursors. Structural
features of each precursor are then scored using a classifier. The best
candidate is selected is there is at least one. We have followed a
similar approach to the miRanalyzer method.

The following features are currently used in our algorithm, most are the
same as those used in sRNAbench (miRanalyzer). The diagram below may
help to clarify some of the terminology used.

[image: _images/mirna_example.png]

	Feature

	Description

	Length

	The length of the longest hairpin
structure

	Stem length

	The length of the longest hairpin
structure stem

	Mfe

	The mean free energy of the hairpin

	Loop length

	The number of bases in the loop of the
hairpin

	Loop GC

	The GC-content of the loop

	GC

	The GC-content of the small hairpin

	Asymmetric bulges

	The number of asymmetric bulges and
mismatches in the stem

	Symmetric bulges

	The number of symmetric bulges and
mismatches in the stem

	Bulges

	The number of bulges in the stem

	Longest bulge

	The number of non-pairing nucleotides of
the longest bulge

	Hairpin mismatches

	The number of single mismatches in the
hairpin

	Mature mismatches

	The number of single mismatches in the
mature microRNA region of the hairpin

	Triplet-SVM features

	All features that were proposed by Xue et
al.

Algorithm:

The basic steps for novel precursor detection are as follows.

	if multiple samples, read counts for all samples are put together
using each sam file and total counts for each unique read (after
collapsing the original fastq files)

	the reads are sorted by read count

	reads are clustered using cluster trees

	read clusters are themselves clustered to detect pairs within 100 nt
(for animals). these are considered to be possible mature/star arms
and checked for hairpin structure

	single clusters are checked for precursors by creating multiple
possible precursors at the 5’ and 3’ ends and evaluating the features

	a precursor is discarded if:

	it has no hairpin

	its read cluster overlaps with the hairpin loop

	it has less than 19 bindings in the stem

	it has less than 11 bindings to the region occupied by the read
cluster

	a random forest classifier/regressor trained on known positives and
negatives is used to score the precursor features

	the precursor with the lowest energy and highest score is used as
the most likely candidate

	for single clusters this region is considered the mature arm and the
star sequence is estimated

	the list of novel miRNAs with precursor, mature, star, reads is
output

Command line usage

Using the command line tool it is simply a matter of setting
novel = 1 in the config file. Reads will first be mapped to mirbase
to remove known miRNAs and also any libraries you included in the
indexes option. The novel prediction step from the command line tool
will produce a file called novel_mirna.csv in the output folder.

Code examples

from smallrnaseq import novel
import pandas as pd
#single file prediction
readcounts = pd.read_csv('countsfile.csv')
samfile = 'mysamfile.sam'
reads = utils.get_aligned_reads(samfile, readcounts)
new = novel.find_mirnas(reads, ref_fasta)

References

	Kang, W. & FriedlÃ¤nder, M.R., 2015. Computational Prediction of
miRNA Genes from Small RNA Sequencing Data. Frontiers in
Bioengineering and Biotechnology, 3, p.7.

	Hackenberg, M. et al., 2009. miRanalyzer: a microRNA detection and
analysis tool for next-generation sequencing experiments. Nucleic
Acids Research, 37(Web Server), pp.W68–W76.

	Friedländer, M.R. et al., 2012. miRDeep2 accurately identifies known
and hundreds of novel microRNA genes in seven animal clades. Nucleic
acids research, 40(1), pp.37–52.

	Shi, J. et al., 2015. mirPRo–a novel standalone program for
differential expression and variation analysis of miRNAs. Scientific
Reports, 5, p.14617.

	Xue, C. et al., 2005. Classification of real and pseudo microRNA
precursors using local structure-sequence features and support vector
machine. BMC bioinformatics, 6, p.310.

	Lopes, I.D.O.N. et al., 2014. The discriminant power of RNA features
for pre-miRNA recognition. BMC bioinformatics, 15(1), p.124.

smallrnaseq

	smallrnaseq package
	Submodules

	smallrnaseq.aligners module

	smallrnaseq.analysis module

	smallrnaseq.app module

	smallrnaseq.base module

	smallrnaseq.config module

	smallrnaseq.de module

	smallrnaseq.ensembl module

	smallrnaseq.mirdeep2 module

	smallrnaseq.novel module

	smallrnaseq.plotting module

	smallrnaseq.srnabench module

	smallrnaseq.tests module

	smallrnaseq.trf module

	smallrnaseq.utils module

	Module contents

smallrnaseq package

Submodules

smallrnaseq.aligners module

smallrnaseq.analysis module

smallrnaseq.app module

smallrnaseq.base module

smallrnaseq.config module

smallrnaseq.de module

smallrnaseq.ensembl module

smallrnaseq.mirdeep2 module

smallrnaseq.novel module

smallrnaseq.plotting module

smallrnaseq.srnabench module

smallrnaseq.tests module

smallrnaseq.trf module

smallrnaseq.utils module

Module contents

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/logo.png

_images/mirna_example.png
mismatches asymmetric bulge hairpin loop

T

3’ overhang symmetric bulges

o0
0-0

hsa-mir-18a

_images/workflow.png
library preparation

sequencing

gene databases
e.g. ensembl,
RNAcentral,
miRBase

short read typ|ca| small ncRNA
sequences ~ 50nt .
analysis steps

trim adapters

collapse reads

reference
align reads genome

miRNA l I

tRNA

Sﬂ;{]‘: count reads in predict new genes
P known genes e.g. miRNAs

co-expression

differential target
expression prediction

_static/minus.png

nav.xhtml

 Table of Contents

 		
 smallrnaseq - tool for short RNA analysis

 		
 Introduction

 		
 Command Line Interface

 		
 Screencast

 		
 Citation

 		
 FAQ

 		
 Installation

 		
 Linux

 		
 Snap package

 		
 For python 3 installs

 		
 For python 2.7 ONLY

 		
 Mac OSX

 		
 bowtie on OSX

 		
 Windows

 		
 Vienna package

 		
 Required dependencies

 		
 Installing R for differential expression

 		
 Using smallrnaseq

 		
 Usage

 		
 Configuration file settings

 		
 Examples

 		
 Mapping to one or more libraries of known RNAs

 		
 Mapping to known miRNAs and finding novel miRs

 		
 Mapping to a reference genome with small RNA features

 		
 Outputs

 		
 Differential expression

 		
 Example

 		
 Adapter trimming

 		
 Aligners

 		
 Links

 		
 Alignment settings

 		
 Bowtie

 		
 Subread

 		
 Configuration file

 		
 Code example

 		
 References

 		
 Code Examples

 		
 Counting microRNAs

 		
 Counting isomiRs

 		
 Mapping to the genome

 		
 Novel miRNA prediction

 		
 Differential Expression

 		
 Methodology

 		
 Counting known miRNAs

 		
 Counting isomiRs

 		
 Classifying isomiRs

 		
 isomiR counting

 		
 References

 		
 Counting genomic features

 		
 Counting features

 		
 Links

 		
 Novel miRNA prediction

 		
 Method

 		
 Command line usage

 		
 Code examples

 		
 References

 		
 smallrnaseq

 		
 smallrnaseq package

 		
 Submodules

 		
 smallrnaseq.aligners module

 		
 smallrnaseq.analysis module

 		
 smallrnaseq.app module

 		
 smallrnaseq.base module

 		
 smallrnaseq.config module

 		
 smallrnaseq.de module

 		
 smallrnaseq.ensembl module

 		
 smallrnaseq.mirdeep2 module

 		
 smallrnaseq.novel module

 		
 smallrnaseq.plotting module

 		
 smallrnaseq.srnabench module

 		
 smallrnaseq.tests module

 		
 smallrnaseq.trf module

 		
 smallrnaseq.utils module

 		
 Module contents

_static/up-pressed.png

_static/up.png

_static/plus.png

